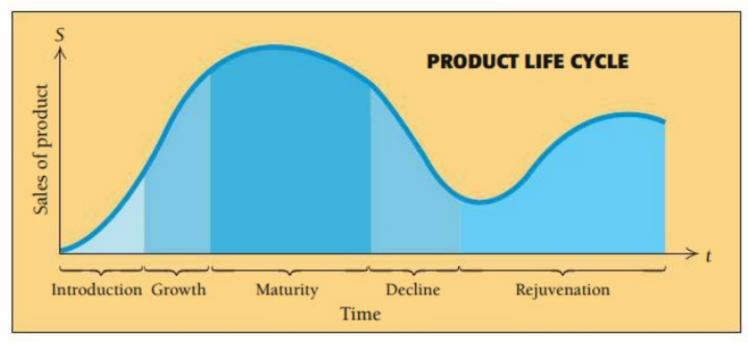
FAR BEYOND

MAT122

Extrema

Product Life Cycle



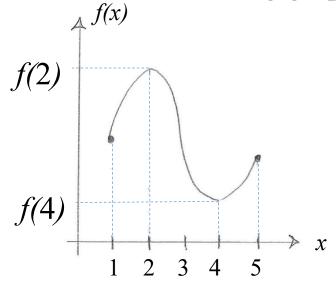
number of items sold with respect to time

sales start slowly then gradually increase sales peak then decrease perhaps improvements/upgrades causes a rejuvenation

maximums and minimums can be found using derivatives

Absolute Extrema

consider the following graph:



domain is [1,5] ← a <u>closed</u> interval

consider x = 2: its corresponding y-value is f(2)f(2) is the largest y-value on [1,5]

then an <u>absolute maximum</u> occurs at x = 2 and its <u>absolute maximum value</u> is f(2)

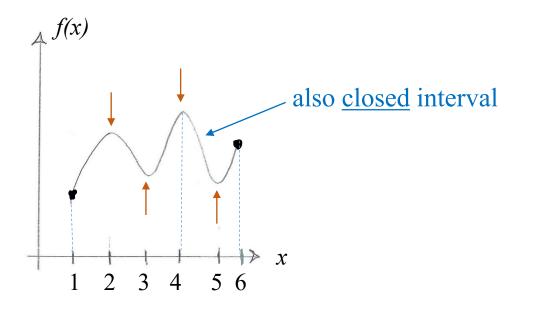
or extrema plural

similarly an **absolute minimum** occurs at x = 4 and its **absolute minimum value** is f(4)

potential max/min called critical points

Local Extrema

sometimes there are multiple minima/maxima in a function plural

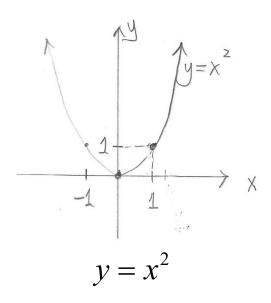


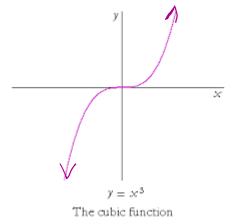
absolute minimum occurs at x = 1 absolute maximum occurs at x = 4

local maxima occur at x = 2, x = 4

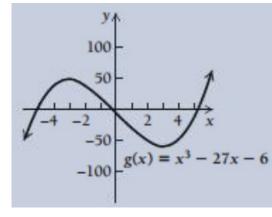
local minima occur at x = 3, x = 5

Extrema - examples





$$y = x^3$$



$$g(x) = x^3 - 27x - 6$$

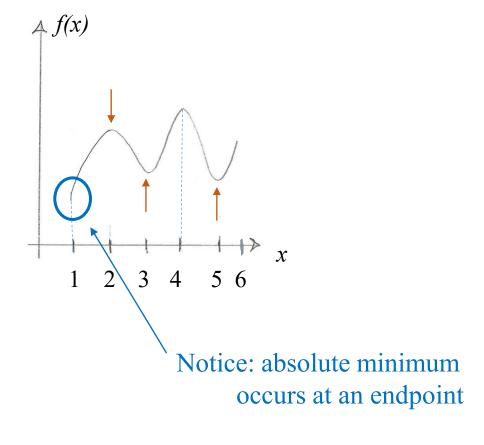
has one minimum but no maximum

no extrema

has one maximum and one minimum

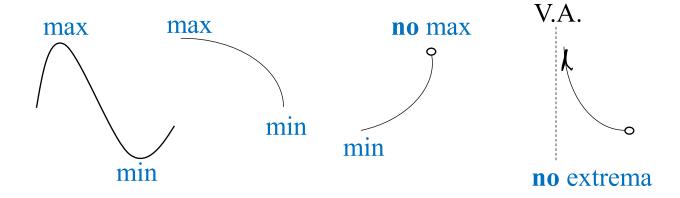
Extrema on a Closed Interval

re-visit previous <u>closed interval</u> graph:



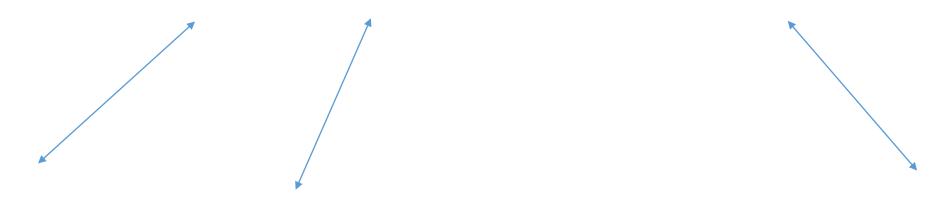
Rule:

If f is continuous on a <u>closed</u> interval, check the endpoints for extrema.



Rate of Change - Refresh

Slope measures the **steepness** of a line or the **rate of change** at a place on a curve



steeper slope implies higher rate of change (x-values and y-values are both increasing)

negative slope implies negative rate of change (as *x*-values are increasing, *y*-values are decreasing)

slope is 0

NO change

Meanings of Derivatives – Review #1

Increasing/Decreasing

If f' > 0 on an interval then f is **increasing** on that interval.

If f' < 0 on an interval then f is **decreasing** on that interval.

when f' = 0 f can have a <u>local max</u> or <u>local min</u> *

*when f' changes from + to -, \rightarrow have max

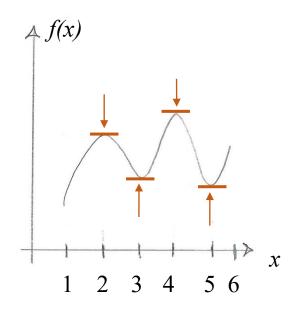
$$f' = 0$$

$$f' < 0$$

f' = 0 *when f' changes from — to +, \rightarrow have min

Local Extrema and Slope of Tangent Line

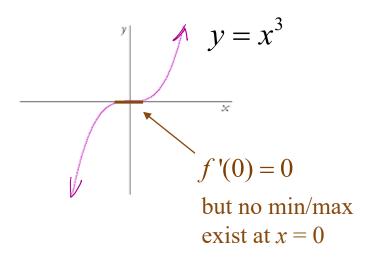
anywhere there is local extrema, the slope of its tangent line is 0:

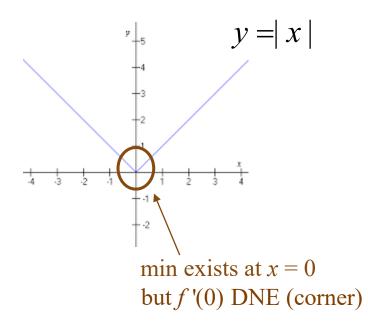


Fermat's Theorem:

If f has a local max or min at c and f'(c) exists, then f'(c) = 0.

doesn't necessarily work the other way...

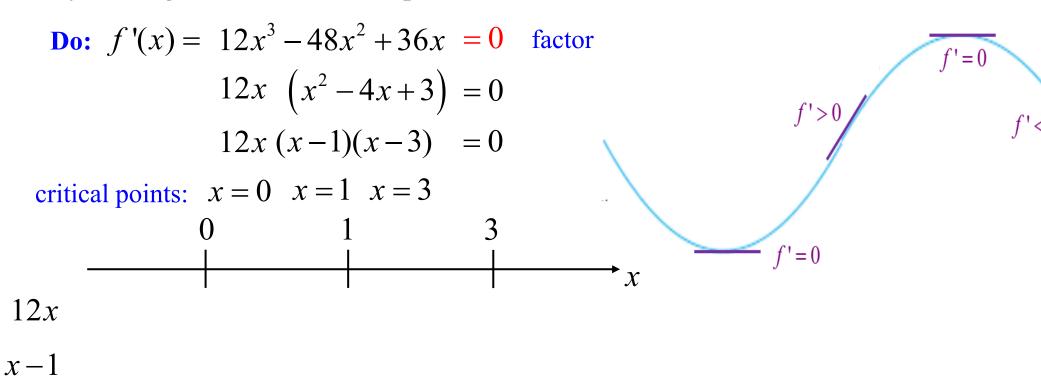




Find Extrema w Differentiation – all reals

ex. Identify extrema of $f(x) = 3x^4 - 16x^3 + 18x^2$

Get critical points by setting first derivative equal to 0.



$$12x(x-1)(x-3)$$

x-3

Find Extrema - revisit with Closed Interval

ex. Identify extrema of $f(x) = 3x^4 - 16x^3 + 18x^2$ on $-1 \le x \le 4$.

Get critical points by setting first derivative equal to 0.

$$f'(x) = 12x^{3} - 48x^{2} + 36x = 0$$
$$12x (x^{2} - 4x + 3) = 0$$
$$12x (x - 1)(x - 3) = 0$$

To find absolute extrema:

plug critical points and ENDPOINTS into original function:

$$f(0) = 0$$
 $f(-1) = 37$ absolute max $f(1) = 5$ $f(3) = -27$ absolute min $f(4) = 32$ none

endpoints cannot be LOCAL extrema

critical points:

$$x = 0$$
 local min
 $x = 1$ local max
 $x = 3$ local min

